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Based on the reversible diffusion-limited cluster-cluster aggregation~DLCA! algorithm, a model for gel
formation is proposed, where the interaction energy between particles is considered as a parameter. Unlike the
irreversible DLCA models, which study only rigid motion of the clusters, the reversible DLCA model simu-
lates explicitly the kinetics of the particles of the clusters, such as restructuring within the same cluster or
breaking away from it. Precisely because of the decrease in the compactness of the clusters with interaction
energy e between the particles, our simulation reveals that the sol-gel transition pointcg of the particle
concentration decreases with increasinge. The most important result of our study is that the value ofcg is
greater than zero and independent of the system size~i.e., the side lengthL of the two-dimensional square
lattice! when the interaction energye is below 1.5. The zero-cg difficulty encountered by the irreversible
DLCA models is therefore removed. In addition, the fractal dimensionD of the clusters is found to decrease
with e and converge to the value obtained by irreversible DLCA models whene goes to infinity.
@S1063-651X~96!06107-7#

PACS number~s!: 82.70.2y, 61.43.Hv, 83.80.Jx, 02.50.Ng

I. INTRODUCTION

Because of its importance in diverse processes in nature
and synthetic industries, as well as the rich physics involved,
the sol-gel transition has recently been extensively studied.
However, since the transition itself is a nonequilibrium pro-
cess with several controlling parameters that complicate the
issue, the understanding of the basic mechanism that leads to
the formation of the gel network is far from complete. Sev-
eral models have been proposed, namely, the kinetic equa-
tion approach@1#, the bond percolation model@2#, and the
kinetic aggregation models@3–6#. Among them, the
diffusion-limited cluster aggregation~DLCA! algorithm
@4,5# is perhaps the most important and represents a great
advance in the understanding of the gel formation. In DLCA
algorithms, particles, as well as clusters of particles, are al-
lowed to diffuse randomly and stick irreversibly when they
touch each other. However, the model has a fundamental
difficulty in predicting the concentration thresholdcg for the
sol-gel transition and gives a zero value forcg in the ther-
modynamic limit of an infinitely large system sizeL @7,8#. In
other words, the gelation can take place at any particle con-
centrationc no matter how low the value is, which is not true
for many aggregation processes in the real world except for a
few examples@9#. In an effort to overcome this difficulty,
Jullien and Hasmy@8# recently proposed a modified DLCA
~MDLCA ! model by allowing cluster deformation in the ag-
gregation process, where they introduced an adjustable tun-
ing flexibility parameterF to allow internal movements in
addition to the rigid motion of the clusters. However, the

introduction of the tuning flexibility parameter merely gives
a phenomenological description of the movements of the
particles inside the clusters and the kinetics of these internal
movements is not thoroughly explored. As pointed out by
Meakin @10#, a reasonably complete model for the cluster
aggregation process should include such effects as long- and
short-range interactions@11#, particle size distribution and
irregular shapes, hydrodynamic interactions@12#, clustering
of clusters@13#, and many others.

Indeed, many experiments@14–19# have already indicated
that the interaction energy between particles plays a very
important role in the aggregation process. When the particles
are bonded only by short-range van der Waals attractive
forces ~i.e., the electrostatic interaction is fully screened!,
which are usually very strong, the aggregation process is
diffusion limited and described by the standard DLCA model
@4,5#. On the other hand, in the case where, in addition to the
short-range van der Waals attractive forces, the particles also
possess a repulsive part in their interactions~i.e., the electro-
static interaction is partially screened!, the aggregation pro-
cess is reaction limited and the reaction-limited cluster-
cluster aggregation~RLCA! model @20# applies. It is worth
noting that in either the standard DLCA or RLCA, the ag-
gregation process is irreversible in the sense that once the
particles are bonded together they cannot break up due to the
deep attractive well. However, there exist situations where
the effective attractive forces are relatively weak@19# or the
experimental temperature is sufficiently high so that the par-
ticles have high probability to escape the attractive well and
break up. The corresponding aggregation process is revers-
ible and described by the reversible DLCA model@21,22# in
which the particles are allowed to restructure within the clus-
ters or even break apart from them.

In this work, we study exactly the influence of the inter-
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action energy between the particles on sol-gel transition pro-
cess. Specifically, a model for gel formation is proposed
where, besides a few details, the kinetics is the same as in the
reversible DLCA model. We find a nonzero concentration
thresholdcg above which gelation can take place and, most
important, when the interaction energy between particles is
not very strong,cg is independent of the system size, as it
should be. Therefore, in the thermodynamic limit of infi-
nitely large system, the difficulty regarding the zerocg is
overcome by our model.

II. MODEL

A Monte Carlo simulation is carried out on anL3L
square lattice with unit lattice constant and periodic bound-
ary conditions in thex andy directions. For a given concen-
tration c, the particles occupy a total ofcn lattice sites,
where n5L2 is the total number of sites. Both nearest-
neighbor ~NN! and next-nearest-neighbor~NNN! interac-
tions are considered and, for simplicity, NN and NNN inter-
actions are assumed to be the same, i.e.,ejk52e ~e.0! when
particlesj andk have either NN or NNN contact. The inclu-
sion of NNN interactions serves to reduce the arbitrary di-
rectional asymmetry imposed by the square lattice on the
particles that possess spherical symmetry in most of the ex-
amples of gel formation in the real world. Some tests are also
carried out where only NN interactions are considered~see
the discussion below!. The steric restriction is applied, i.e.,
double occupancy of any lattice site is forbidden. Initially,N
~5cn! particles are randomly distributed on the lattice sub-
ject to steric restriction and are allowed to diffuse randomly.
Two particles stick and merge into one cluster when they
have NN or NNN contact. The clusters behave the same way
as the particles, that is, when any one particle in one cluster
has NN or NNN contact with the particles of a second clus-
ter, the two clusters stick to merge into a new cluster. Fur-
thermore, unlike in the irreversible DLCA model, the par-
ticles are allowed to rearrange their positions within the same
cluster or break apart from it. The probability of such a move
depends on the change in energyDE and is proportional to
exp~2DE/kT!, wherek is the Boltzmann constant andT the
temperature of the system. The mobilityh of each cluster~or
particle! is assumed to be inversely proportional to its mass
m, i.e.,h }m2a with a51. Other values of the exponenta
have also been used in the literature; however, neither the
dynamics nor the final geometry of the aggregates changes
too much@4,5#. A standard Metropolis algorithm@23# is em-
ployed to sample the states with the correct thermodynamic
distribution proportional to exp~2E/kT!, whereE ~which is
the summation of the interaction energies between the par-
ticles! is the total energy of each configuration. Any at-
tempted move consistent with the steric restriction is ac-
cepted when the condition min@exp~2DE/kT!,1#>z is also
satisfied, where min stands for taking the minimum of the
two quantities,DE5Ef2Ei is the change in energy due to
the move, andz is a random number uniformly distributed
between zero and unity. Starting from some initial configu-
ration, the system is allowed to evolve according to the
above condition until a final stable state is reached. The evo-
lution time is measured in Monte Carlo steps, which is the
number of attempted moves of the particles.

III. RESULTS AND DISCUSSION

The main objective of this work is to study the influence
of the interaction energy between particles on the sol-gel
transition pointcg , which is determined by the following
procedure. For a certain value of particle concentrationc, 20
independent computer runs~with different sets of random
numbers! are carried out and if the largest cluster spans the
square lattice in either thex or y direction the system is
considered to be in the gel state, since with the periodic
boundary condition this cluster actually spans the whole
space. The number of computer runs~out of a total of 20
runs! that end up with a gel state increases with the value of
the particle concentrationc. The gelation pointcg is defined
as the value ofc for which 10 out of 20 computer runs end
up with a gel state. Figure 1 shows the dependence ofcg on
g5e/kT, in which the filled and open symbols are, respec-
tively, the data obtained from system of side lengthL560
and 100, and the error bar is represented by the short vertical
lines attached to the symbols. In both cases,cg first decreases
with g and then approaches a constant. Wheng is small, the
particles have relatively high probability to restructure their
positions within the same cluster or completely break apart
from it, because the attractive well is not deep and therefore
the energy barrier for such a move is low. As a result, the
clusters assume rather compact structures, giving rise to a
high value of the critical sol-gel transition pointcg . As g
increases, the probability for restructuring and breaking up
decreases and so does the compactness of clusters, leading to
a lower value ofcg . As g increases further, the above prob-
ability approaches zero and there is virtually no breaking up;
therefore the compactness of the clusters and hence the value
of cg remain unchanged. Figure 1 also shows that for smallg
~g<1.5 here!, the value ofcg is actually the same~within
numerical accuracy! for systems of size lengthL560 and
100, while for large values ofg, the difference incg between
the two systems is evident. In what follows this point will be
discussed in detail.

In Fig. 2 we present the variation of the critical concen-
tration cg with the size lengthL of the system where the

FIG. 1. Dependence of sol-gel transition pointcg on g5e/kT.
The filled and open symbols are, respectively, the data for systems
of lattice lengthL560 and 100. The error bar is shown as the short
line attached to the symbol and the same convention is also used in
Figs. 2 and 3.
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filled symbols are the data for interaction energyg51.0, the
open symbols represent the data forg510, and the short
vertical line at each data point is again the error bar. For
g510, it is seen thatcg decreases with increasingL. By
extrapolating, we conjecture that the sol-gel transition point
cg will approach zero in the thermodynamic limit ofL→`,
which is in accord with the result of Kolb and Herrmann@7#
and is the main difficulty of the irreversible DLCA models.
However, forg51.0 ~filled symbols!, cg behaves completely
differently and on average the value ofcg stays around 0.165
as L changes. Even though it is not possible to carry out
calculations in the thermodynamic limit ofL→`, our obser-
vation strongly indicates that under the specific condition
~i.e., g51.0! the critical value ofcg is independent of the
system sizeL. This result suggests that in the present model,
the zero-cg difficulty encountered by the irreversible DLCA
models can be overcome provided that the interaction energy
between particles is weak. Physically, wheng5e/kT;1.0
the thermal energy of the particles~about the order ofkT! is
comparable with the interaction energye between the par-
ticles; hence the particles are capable of escaping the attrac-
tive well by thermal motion, which makes the aggregation
process reversible. It is this reversibility that removes the
zero-cg difficulty. In order to test if the above result depends
on the details of the interaction energy, several computer
runs are carried out where only NN interactions are consid-
ered. The conclusion is the same, that is, the sol-gel transi-
tion point cg is independent of the system sizeL. The value
of cg , however, is different and equals 0.19 for NN-only
interactions, which is larger than that in the case of NN plus
NNN interactions. This is because the maximum number of
bonds of a particle in the case of NN plus NNN interactions
is 8, while it is only 4 in the case of NN-only interactions.
Consequently, for a given interaction energye and tempera-
tureT, it is easier for the particle to escape the attractive well
in NN-only interactions than in NN plus NNN interactions,
giving rise to more compact aggregate structures and hence a
larger value ofcg . We recall that in their MDLCA model@8#
Jullien and Hasmy described the internal motions of the par-
ticles inside the clusters by an adjustable parameterF with-

out specifying the details of their kinetics. Our model, on the
contrary, takes care of the kinetics of the internal motions to
some extent, i.e., the restructuring of the particle positions
within the clusters and the breaking apart of the particles
from them are natural consequences of energy consideration.
We point out that other internal motions, such as bond and
cluster rotational diffusions, are neglected in the present
model, which might be important for some systems. In the
irreversible DLCA models the gelation pointcg can be esti-
mated from a simple scaling argument. It is known that in
the irreversible model, only one cluster exists in the system
at the final stage of the aggregation process. When this clus-
ter ~of massm! spans the whole system~of sizeL!, cg can be
calculated ascg;m/Ld;LD/Ld5L2(d2D), whered andD
refer, respectively, to the dimensionality of Euclidean space
~d52 here! and the cluster. Since the fractal dimensionD is
always smaller thand, we havecg50 whenL goes to infin-
ity. This scaling argument, however, cannot simply apply
here because, due to the reversibility of the model, several
clusters coexist in the system at the final stage of the aggre-
gation process. For the particle concentrationc,cg the indi-
vidual clusters cannot span the whole system, so no gel can
form; however, whenc increases and exceedscg , at least
one cluster spans the whole system to form a gel.

The fractal dimensionD is calculated from the relation-
shipRg;N1/D in the scaling region, whereN is the number
of particles in the cluster andRg is the radius of gyration of
the cluster defined as@21#

Rg5
1

2N2 (
j ,k51
~ jÞk!

N

ur j2r ku, ~1!

wherer j andr k are the positions of particlesj andk and the
summation is over all the particles inside the cluster. We first
plot lnN versus lnRg to determine the fractal dimensionD
and then examine how the fractal dimension varies with in-
teraction energyg. The result is presented in Fig. 3, where
the data were obtained from the system of side lengthL580
with particle concentrationc50.10. We observe from Fig. 3
thatD first decreases very rapidly with increasingg and then

FIG. 2. Variation ofcg with side lengthL of the system. The
filled and open symbols represent the data for interaction energy
g51.0 and 10.0, respectively.

FIG. 3. Dependence of the fractal dimensionD on interaction
energyg. The data were obtained from the system of side length
L580 with particle concentrationc50.10.
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reaches a constant value of about 1.45. As mentioned earlier,
the compactness of the clusters decreases with the increase
of the interaction energy and henceD decreases withg. The
value of 1.45 at largeg is comparable with those obtained by
the irreversible DLCA models that reportedD51.45–1.50
@4# and 1.3860.06 @5# in the low particle concentration re-
gime. Therefore, wheng is very large the present model is
similar to its irreversible counterparts, since the attractive
well is so deep and therefore the energy barrier is so high
that no breaking up is possible. It is worth pointing out that
even for very large values ofg ~i.e., in the limit ofg→`! our
model is still different from the irreversible ones in that local
restructuring is always allowed if such a move decreases the
energy of the system or keeps it unchanged, while in the
irreversible models no restructuring is allowed at all. The
fact that our value ofD for largeg is the same as that in the
irreversible models~within numerical accuracy! leads us to
conclude that the actual value ofD is not sensitive to the
details of the models.

IV. CONCLUSION

We have studied a gel formation mechanism based on a
reversible DLCA algorithm, in which the interaction energy
between particles plays an important role. By allowing the
particles to restructure within the clusters or even break up
from them, our model simulates not only the rigid motion of
the clusters but also the kinetics of individual particles of the
clusters. We find that there exists a nonzero concentration
thresholdcg for the sol-gel transition that is independent of
the system size when the interaction energy between par-
ticles is not very strong.
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